
Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025 

Applications of Vector, Matrix, and Quaternion in 

Shaders Programming for Game Development Using 

Godot Engine 
 

Muhammad Kinan Arkansyaddad – 135231521,2  

Program Studi Teknik Informatika  

Sekolah Teknik Elektro dan Informatika 

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia  
113523152@std.stei.itb.ac.id  2mkinanarkansyaddad@gmail.com 

 

 

 

Abstract— Applications of vectors, matrices, and quaternions in 

shader programming are crucial for enhancing game development 

within the Godot Engine. Vectors represent points and directions 

in 3D space, while matrices facilitate transformations such as 

translation, rotation, and scaling of objects. Quaternions offer a 

robust solution for handling rotations, effectively avoiding issues 

like gimbal lock that can arise with traditional methods. By 

integrating these mathematical constructs, developers can create 

visually rich and immersive gaming experiences, enabling dynamic 

interactions and realistic animations in real-time applications. 

 

Keywords—game development, Godot Engine, shaders, 

transformations. 

 

 

I.   INTRODUCTION 

Shaders are specialized programs that run on the GPU 

(Graphics Processing Unit), designed to control the rendering 

pipeline by manipulating how surfaces and materials appear in 

a scene. By defining how vertices and pixels are processed, 

shaders can achieve complex visual effects, including realistic 

lighting, shadows, reflections, and post-processing effects like 

bloom or motion blur. Shaders are integral to modern game 

development, offering a way to create immersive environments 

that engage players with visually rich experiences. From 

dynamic weather systems to detailed textures and particle 

systems, shaders enable developers to push the boundaries of 

graphical fidelity and performance optimization. 

In game development, shaders are categorized into two main 

types: vertex shaders and fragment (or pixel) shaders. Vertex 

shaders handle the manipulation of vertex data, such as 

transformations and projections, while fragment shaders 

determine the color and texture of individual pixels. Beyond 

these, advanced shader types like geometry shaders and 

compute shaders provide even greater flexibility for developers. 

The use of shaders has become ubiquitous in creating not only 

photorealistic graphics but also stylized visuals, allowing 

developers to craft unique aesthetics tailored to specific game 

genres. 

The Godot Engine, a popular open-source game development 

platform, offers robust support for shader programming through 

its Shader Language, which is heavily influenced by GLSL 

(OpenGL Shading Language). Godot also provides a Visual 

Shader Editor, which allows developers to create shaders using 

a node-based interface, making shader programming more 

accessible to those without prior coding experience. This dual 

approach ensures that both novice and experienced developers 

can harness the power of shaders to implement custom effects 

such as water ripples, global illumination, and procedural 

texturing. Moreover, Godot integrates shaders seamlessly into 

its rendering pipeline, enabling developers to apply them to 2D 

and 3D projects with minimal friction. 

This paper explores the practical application of shader 

programming in game development, focusing on the use of 

linear algebraic concepts, including vectors, matrices, and 

quaternions, to create dynamic and visually compelling effects 

within the Godot Engine. By linking theoretical foundations to 

real world implementations, this work aims to provide a clear 

pathway for developers to harness the power of shaders and 

mathematical algorithms in their game development projects. 

 

 

II.  THEORETICAL BASIS 

A. Vector 

Vectors are a fundamental mathematical tool used to 

represent quantities with both magnitude and direction. In 3D 

graphics, vector v is typically expressed as: 

𝑣 =  [
𝑥
𝑦
𝑧

], 

where x, y, and z represent its components along the 

corresponding axes. In shaders, vectors are used to define 

positions, directions (e.g., light rays), and normals, which are 

critical for calculating how light interacts with surfaces. 

The dot product of two vectors a and b is particularly 

important for determining angles between them, especially in 

lighting calculations. It is defined as: 

𝑎 ⋅ 𝑏 = 𝑎𝑥𝑏𝑥 + 𝑎𝑦𝑏𝑦 + 𝑎𝑧𝑏𝑧 =∥ 𝑎 ∥∥ 𝑏 ∥ 𝑐𝑜𝑠𝜃. 

In practice, this equation is used in shaders to compute diffuse 

lighting, where 𝑐𝑜𝑠𝜃 determines the intensity of light hitting a 

surface based on the angle between the light direction and the 

normal surface. A higher value indicates that the surface is 

directly facing the light source, resulting in brighter 

mailto:113523152@std.stei.itb.ac.id
mailto:mkinanarkansyaddad@gmail.com


Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025 

illumination. 

The cross product, another essential vector operation, 

generates a vector perpendicular to two given vectors. This 

operation is critical in calculating tangent and bitangent vectors, 

which are used in normal mapping to simulate fine surface 

details such as bumps and grooves. 

 

B. Matrices 

Matrix is a rectangular array of numbers, symbols, or 

expressions, arranged in rows and columns. Matrices are 

typically denoted by uppercase letters, such as A, B, or C, and 

their dimensions are expressed as m×n, where m represents the 

number of rows and n represents the number of columns. Each 

element of a matrix is identified by its position, denoted as aij, 

where i is the row index and j is the column index. This 

structured format allows for efficient representation and 

manipulation of linear equations and transformations in various 

applications, including computer graphics and game 

development. 

Transformation matrices are a specific type of matrix used to 

perform linear transformations on geometric data in computer 

graphics[1]. These matrices enable operations such as translation, 

rotation, and scaling, which are essential for manipulating 3D 

models within a scene. In shader programming, particularly 

within the graphics pipeline, transformation matrices are applied 

to the vertices of 3D objects to determine their final position and 

orientation in relation to the camera view. For instance, a 4x4 

transformation matrix can represent a combination of these 

transformations, allowing for efficient computation and 

rendering of complex scenes. 

 
Fig 2.1 Rotation matrix examples 

Source:https://informatika.stei.itb.ac.id/~rinaldi.munir/Aljabar

Geometri/2023-2024/Algeo-18-Ruang-vektor-umum-Bagian4-

2023.pdf 

 

C. Quaternion 

Quaternions are a mathematical extension of complex 

numbers and are particularly useful in representing rotations in 

three-dimensional space. A quaternion is typically expressed in 

the form 

𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 

where 𝑎 is the scalar component and 𝑏, 𝑐, 𝑑 are vector 

components. This representation allows for a compact and 

efficient way to encode rotation, avoiding some of the pitfalls 

associated with other methods, such as Euler angles, which can 

suffer from gimbal lock. In the context of game development 

and shader programming, quaternions provide a robust 

framework for smoothly interpolating rotations and performing 

complex transformations on 3D objects. 

When applying a quaternion to rotate a vector p in three-

dimensional space, the resulting vector p′ can be calculated 

using the formula 

p′ = qpq-1 

 where q-1 is the conjugate of the quaternion q. This operation 

effectively rotates the vector p around a specified axis defined 

by the quaternion. For example, if a vector p is rotated, the 

quaternion can be constructed like this  

q = cos (
𝜃

2
) + sin (

𝜃

2
) 𝑢, 

where u is the unit vector of the axis[2]. This formulation allows 

for efficient computation of the rotated vector, making 

quaternions a preferred choice in real-time graphics 

applications, such as those developed using the Godot Engine. 

 

D. Shaders 

Shaders are specialized programs that run on the GPU 

(Graphics Processing Unit) and are essential for rendering 

graphics in real-time applications, such as video games. In the 

context of the Godot Engine, shaders are used to control the 

rendering pipeline, allowing developers to define how objects 

are drawn on the screen. Shaders can be categorized into several 

types, including vertex shaders, fragment (or pixel) shaders, and 

compute shaders, each serving distinct roles in the graphics 

rendering process. Vertex shaders are responsible for processing 

vertex data, transforming 3D coordinates into 2D screen 

coordinates, while fragment shaders calculate the color and 

other attributes of each pixel, enabling detailed visual effects 

and textures. 

In Godot, shaders are written in a shading language that is 

similar to GLSL (OpenGL Shading Language), providing 

developers with the flexibility to create custom visual effects 

tailored to their specific needs. The shader pipeline in Godot 

allows for the implementation of various techniques, such as 

normal mapping, which simulates detailed surface textures 

without increasing the polygon count, and dynamic lighting, 

which enhances realism by accurately simulating how light 

interacts with surfaces. By utilizing shaders, developers can 

achieve a wide range of visual styles and effects, from simple 

color adjustments to complex post-processing effects that 

significantly enhance the overall aesthetic of a game[3]. 

 

 

III.   IMPLEMENTATION 

A. Wave Effect Shaders 

The wave effect shader demonstrates the fundamental 

application of vector mathematics and trigonometric functions 

to create dynamic surface deformation. At its core, the shader 

manipulates vertex positions using a sinusoidal wave equation  

y(x, t)  =  A sin(ωx +  φt), 
where A represents amplitude, ω defines spatial frequency, and 

φ determines temporal frequency. This equation drives the 

primary mesh deformation, creating smooth, wave-like motion 

across the surface. The implementation extends beyond simple 

vertex displacement by incorporating normal vector 

recalculation, essential for maintaining realistic lighting 

interactions. 

The vertex transformation pipeline begins with the base 

vertex position and applies the wave displacement along the 

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-18-Ruang-vektor-umum-Bagian4-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-18-Ruang-vektor-umum-Bagian4-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-18-Ruang-vektor-umum-Bagian4-2023.pdf


Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025 

normal vector direction. This approach ensures that the 

deformation follows the natural surface curvature of the mesh. 

The shader calculates the new vertex position using  

VERTEX′ =  VERTEX + (NORMAL ×  wave_height),  
where wave height varies according to the sine function. 

Simultaneously, the shader updates normal vectors through 

𝑁 =  𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(−𝜕𝑦/𝜕𝑥, 1, 0), 
maintaining accurate light reflection across the deformed 

surface. 

 
Fig 3.1 Wave effect shader implementation using Godot 

shader language 

 

B. Rotation Shader Using Matrix Transformation 

The rotation shader exemplifies efficient geometric 

transformation through matrix operations. The shader constructs 

a rotation matrix R(θ) for y-axis rotation using trigonometric 

functions: 

𝑅(𝜃) = [
cos 𝜃

0
− sin 𝜃

0 
1
0

sin 𝜃
0

cos 𝜃
] 

This matrix preserves distances and angles while rotating points 

around the specified axis, maintaining the mesh's structural 

integrity during animation. The orthogonal nature of rotation 

matrices ensures that RRᵀ = RᵀR = I and det(R) = 1, properties 

that guarantee proper transformation behavior. 

Implementation efficiency comes from the shader's use of 

matrix-vector multiplication for both vertex and normal 

transformation. Each vertex position undergoes transformation 

through v' = Rv, while normal vectors transform similarly but 

without translation components. The shader optimizes 

performance by computing the rotation matrix once per frame 

and reusing it across all vertices, reducing per-vertex 

computation overhead. 

The shader extends basic rotation functionality by 

incorporating time-based animation. By linking the rotation 

angle to TIME * rotation_speed, it creates continuous, smooth 

rotation while maintaining precise control through the 

rotation_speed uniform. 

  

 

 
Fig 3.2 Rotation shader using matrix transformation 

implementation using Godot shader language 

 

C. Water Surface Shader 

The water surface shader represents the most complex 

implementation, combining multiple mathematical concepts to 

create realistic water movement. The shader employs wave 

superposition through the equation 

𝑊(𝑥, 𝑧, 𝑡)  =  𝛴ᵢ 𝐴ᵢ𝑠𝑖𝑛(𝑘ᵢ · 𝑝 +  𝜔ᵢ𝑡), 
where multiple wave components combine to create complex 

surface patterns. Each wave component contributes unique 

amplitude (Aᵢ), direction (kᵢ), and frequency (ωᵢ) characteristics, 

resulting in natural-looking water movement. 

Normal vector calculation becomes particularly crucial for 

water surfaces, as it directly impacts light reflection and 

refraction effects. The shader computes normals using the 

gradient of the height field: 

𝑁 =  𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(−𝜕𝑊/𝜕𝑥, 1, −𝜕𝑊/𝜕𝑧).  
This calculation considers both primary and secondary wave 

contributions, ensuring accurate specular highlights. The 

implementation optimizes these calculations by using vector dot 

products for wave direction computation and careful normal 

vector renormalization. 



Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025 

 
Fig 3.3 Water Surface Shader implementation using Godot 

shader language 

 

D. Quaternion Deformation Shader 

The quaternion deformation shader uses the mathematical 

concepts of quaternions to achieve dynamic and rotational mesh 

deformation. This technique introduces spatially and temporally 

dependent rotations to vertex positions and normal vectors, 

maintaining smooth and continuous deformation across the 

surface of the mesh. The approach involves combining 

quaternion operations such as multiplication and axis-angle 

conversion to create the desired transformations. 

The deformation process begins by defining a deformation 

axis and computing rotation angles based on both spatial and 

temporal factors. Each vertex's position determines a spatial 

rotation angle proportional to its distance from the origin, while 

a temporal rotation angle introduces time-based animation. 

These angles are converted into quaternions using the axis-angle 

formula: 

𝑞 = (𝑎𝑥𝑖𝑠 ⋅ 𝑠𝑖𝑛(𝑎𝑛𝑔𝑙𝑒/2), 𝑐𝑜𝑠(𝑎𝑛𝑔𝑙𝑒/2)). 
A spatial quaternion and a temporal quaternion are calculated 

independently, then combined through quaternion 

multiplication to create a unified transformation. 

Vertex positions are updated using the combined quaternion 

to ensure deformation follows the desired axis. The quaternion 

rotation formula is applied where the original vertex vector is 

rotated, resulting in smooth and continuous transformations. 

Normal vectors, critical for accurate lighting and shading, are 

recalculated using the same quaternion operation to maintain 

realistic reflections across the deformed surface. 

The fragment shader enhances the visual output by computing 

a deformation intensity, measured as the distance between the 

original and deformed vertex positions. This deformation 

intensity is used to modulate the surface color, creating a 

gradient that highlights areas of significant transformation. 

Lighting parameters such as metallic and roughness are also 

adjusted to ensure consistency with the material properties. 

 
Fig 3.4 Quaternion deformation shader implementation 

using Godot shader language 

 

 

IV.   RESULT AND ANALYSIS 

A. Wave Effect Shaders 

 

 
Fig 4.1 Wave effect shader demonstration going up 

 



Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025 

 
Fig 4.2 Wave effect shader demonstration going down 

 

The wave effect shader is a powerful tool that brings dynamic 

wave-like motion to mesh surfaces by utilizing sine waves to 

create visually captivating deformations. This shader is 

particularly beneficial for game developers looking to simulate 

the natural movement of various materials, such as flowing 

flags, billowing fabrics, or even gentle terrain undulations. By 

manipulating parameters like wave height (amplitude), 

frequency of the waves, and the speed of animation, developers 

can achieve a wide range of effects that enhance the realism and 

aesthetic appeal of their games. 

For instance, when applied to cloth physics, the wave effect 

shader can simulate the way fabric reacts to wind or movement, 

creating a more immersive experience for players. Animated 

banners that flutter in the breeze can be brought to life, adding a 

layer of dynamism to the game environment. Additionally, this 

shader can be used to create simple water surfaces that ripple 

and flow, providing a visually pleasing alternative to more 

complex fluid dynamics simulations. 

The versatility of the wave effect shader makes it an 

invaluable asset in a game developer's toolkit. Whether it's for 

enhancing the realism of a character's clothing, adding life to 

environmental elements, or creating engaging visual effects, this 

shader allows for creative expression and technical innovation, 

ultimately contributing to a richer gaming experience. By 

harnessing the power of wave motion, developers can transform 

static scenes into vibrant, interactive worlds that captivate 

players and draw them deeper into the game. 

 

B. Rotation Shader Using Matrix Transformation 

 
Fig 4.3 Rotation shader demonstration 

 

The rotation shader is an essential tool in game development 

that enables the continuous rotation of objects through the use 

of matrix transformations. This shader is particularly effective 

for enhancing the visual appeal of various in-game elements, 

such as pickups, power-ups, and interactive objects, by drawing 

the player's attention to them. By implementing smooth, 

seamless rotation around an object's axis, the shader not only 

adds dynamism to the scene but also ensures that the lighting 

remains consistent and realistic through the proper rotation of 

normal vectors. 

One of the most common applications of the rotation shader 

is in the creation of rotating collectibles. Imagine a shiny coin or 

a glowing orb that spins gently in place, enticing players to 

approach and interact with it. This captivating motion can 

significantly enhance the player's experience, making the game 

world feel more alive and engaging. Additionally, the shader is 

ideal for floating items, such as magical artifacts or power-ups, 

that need to maintain a constant rotation to convey a sense of 

energy and allure. 

Moreover, the rotation shader is also well-suited for 

mechanical objects, such as gears, turbines, or robotic 

components, that require a continuous spinning motion to reflect 

their functionality. By incorporating this shader, developers can 

create visually striking animations that not only serve a practical 

purpose but also contribute to the overall aesthetic of the game. 

In essence, the rotation shader is a versatile and powerful tool 

that allows developers to breathe life into their game 

environments. By utilizing this shader, they can create a sense 

of movement and interaction that captivates players, 

encouraging exploration and engagement with the game world. 

Whether it's a simple collectible or a complex mechanical 

device, the rotation shader plays a crucial role in enhancing the 

visual storytelling and immersive experience of modern games. 

 

C. Water Surface Shader 

 
Fig 4.4 Water surface shader demonstration 

 

The water surface shader is a tool designed to simulate 

realistic water surfaces, bringing a sense of authenticity and 

immersion to game environments. By combining multiple wave 

patterns and accurately calculating how light interacts with the 

water, this shader creates visually stunning representations of 

lakes, oceans, and other bodies of water that require dynamic 

wave movement. 

In the realm of game development, the water surface shader 

is invaluable for crafting environments that feel alive and 

responsive. Whether it’s a serene lake reflecting the sky or a 

tumultuous ocean with crashing waves, this shader can adapt to 

various scenarios, enhancing the overall aesthetic of the game. 

One of its standout features is the ability to incorporate foam 

effects at the peaks of waves, adding an extra layer of realism 

that mimics how water behaves in nature. This detail is 



Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025 

particularly important for creating immersive experiences, as it 

helps players feel as though they are truly interacting with a 

living body of water. 

Moreover, the shader offers developers the flexibility to 

customize wave directions, allowing for the simulation of 

everything from gentle ripples on a calm lake to the chaotic 

swells of a stormy sea. This adaptability makes it suitable for a 

wide range of environments and gameplay scenarios. 

Developers can easily adjust parameters such as wave height, 

speed, and even the color of the water to align with their game's 

unique art style and environmental conditions. 

For instance, a tranquil, sunlit lake might feature soft, rolling 

waves with a clear blue hue, while a dark, stormy ocean could 

showcase towering waves with deep green and gray tones, 

reflecting the turbulent atmosphere. This level of customization 

not only enhances the visual fidelity of the game but also allows 

developers to create a more engaging and believable world for 

players to explore. 

In summary, the water surface shader is a powerful asset in 

the toolkit of game developers, enabling them to create realistic 

and captivating water effects that significantly enhance the 

player's experience. By simulating the intricate behaviors of 

water and providing extensive customization options, this 

shader plays a crucial role in bringing game environments to 

life, making them more immersive and visually appealing. 

 

D. Quaternion Deformation Shader  

 
Fig 4.5 Quaternion deformation shader demonstration with 

0.5 deformation strength and deformation axis of 1 for each 

axis 

 

Quaternion deformation shader is a tool that enables the 

creation of organic, flowing deformations in 3D meshes, 

utilizing quaternion mathematics to intricately twist and warp 

vertices based on their distance from the center and the passage 

of time. Unlike traditional rotation shaders, which often produce 

straightforward and predictable movements, this shader 

generates complex and smooth deformations that can ripple 

through objects in a continuous and mesmerizing manner. 

Game developers can use this shader to craft otherworldly 

effects that captivate players and enhance the immersive quality 

of their games. For instance, it can be used to design alien 

structures that pulse and breathe, giving them a life-like quality 

that draws players into the experience. Additionally, it is perfect 

for creating tentacles or appendages that writhe and move 

organically, adding a sense of realism to creatures that might 

otherwise feel static or lifeless. 

The shader is particularly effective in genres that thrive on 

visual intrigue and surrealism, such as horror games, where 

objects need to transform unnaturally to evoke fear and tension. 

Imagine a scene where a seemingly ordinary object begins to 

twist and contort, creating an unsettling atmosphere that keeps 

players on edge. In fantasy games, it can be employed to depict 

shape-shifting creatures that fluidly change form, enhancing the 

magical and unpredictable nature of the game world. Similarly, 

in sci-fi settings, the shader can bring to life biomechanical or 

alien technology, creating visual effects that challenge the 

boundaries of reality. 

For example, developers might use this shader to create a 

formidable boss monster that constantly morphs its shape, 

making it a dynamic and unpredictable adversary. Alternatively, 

it could be applied to an ancient magical artifact that twists and 

writhes with an otherworldly power, captivating players with its 

mysterious allure. Another exciting application could be a 

spatial anomaly that warps the geometry of everything nearby, 

creating a visually stunning and disorienting effect that enhances 

the sci-fi narrative. 

One of the standout features of this shader is its ability to 

maintain smooth transitions, effectively avoiding issues like 

vertex tearing or sharp discontinuities that can detract from the 

visual experience. This quality makes it ideal for high-quality 

visual effects that need to appear fluid and organic, rather than 

mechanical or rigid. By incorporating this shader into their 

projects, developers can elevate the visual storytelling of their 

games, creating environments and characters that feel alive and 

responsive, ultimately enriching the player's journey through 

fantastical worlds. 

 

 

V.   CONCLUSION 

The use of vector, matrix, and quaternion operations in shader 

programming plays a crucial role in game development, 

particularly within the Godot Engine. These mathematical 

concepts are essential for creating dynamic and visually 

compelling effects, optimizing rendering processes, and 

achieving smooth animations. Understanding their application 

allows developers to unlock new possibilities in game design, 

enhancing both performance and aesthetics. By integrating these 

concepts into real-time game environments, developers can 

create more immersive and interactive experiences, pushing the 

boundaries of what is achievable in modern game development. 

 

 

VI.   APPENDIX 

Shader demonstration video: 

https://drive.google.com/drive/folders/1MRQaNRgrC0LZ9E5

Kq43McidSc_NqGcNp?usp=sharing 

Project source code: 

https://github.com/kin-ark/Learning-Shaders 

 

VII.   ACKNOWLEDGMENT 

The author expresses gratitude to all parties who have assisted 

in the making of this paper, especially to: 

1. Allah Swt. 

2. Both parents, for providing moral and material support. 

https://drive.google.com/drive/folders/1MRQaNRgrC0LZ9E5Kq43McidSc_NqGcNp?usp=sharing
https://drive.google.com/drive/folders/1MRQaNRgrC0LZ9E5Kq43McidSc_NqGcNp?usp=sharing
https://github.com/kin-ark/Learning-Shaders


Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025 

3. Friends who have encouraged and aided in the 

completion of this paper. 

4. Dr. Judhi Santoso, M.Sc. and Arrival Dwi Sentosa, 

S.Kom, M.T. as the lecturers for the IF2123 Linear 

Algebra and Geometry course, for their invaluable 

guidance and support throughout the semester. 

The author deeply appreciates all the assistance, 

encouragement, and kindness received from these individuals 

and groups, without which the completion of this paper would 

not have been possible. 

 

 

REFERENCES 

[1] Munir, Rinaldi. 2023. “Ruang Vektor Umum (bagian 4) dan Transformasi 
Linier”. 

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-

2024/Algeo-18-Ruang-vektor-umum-Bagian4-2023.pdf (accessed on 1 
January 2025). 

[2] Munir, Rinaldi. 2023. “Aljabar Quaternion (bagian 2)”. 

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-
2024/Algeo-26-Aljabar-Quaternion-Bagian2-2023.pdf (accessed on 1 

January 2025). 

[3] Godot Documentation. (2023). Godot Engine Documentation. 
https://docs.godotengine.org/ (accessed on 1 January 2025) 

 

 

STATEMENT 

I hereby declare that this paper I have written is my own 

work, not an adaptation or translation of someone else's 

paper, and not plagiarism. 

Bandung, 1 January 2025    

 

 
 

Muhammad Kinan Arkansyaddad 

13523152 

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-18-Ruang-vektor-umum-Bagian4-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-18-Ruang-vektor-umum-Bagian4-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-26-Aljabar-Quaternion-Bagian2-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-26-Aljabar-Quaternion-Bagian2-2023.pdf
https://docs.godotengine.org/

